

HABEGGER
COMPLETE HVAC SOLUTIONS

Ductless 201
presented by:
Roman Krywyn
309-690-9711
IL/IA Residential Training & Service
Manager

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Your Habegger Technical Support Team

Commercial Support

- Dirk Nauman 309-690-9705
- Jason Ruggles 309-690-9714

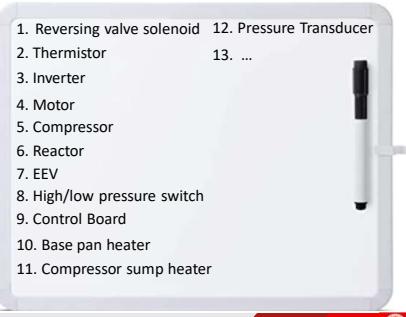
Residential Support

- Roman Krywyn 309-690-9711 Peoria, Springfield, Champaign, Spring Valley.
- Rob Young 309-690-9725 Rock Island, Cedar Rapid IA

Warranty Support

- Francisco Mendez 309-690-9712

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



List all the parts that may be in a ductless condenser.

1. Reversing valve solenoid 12. Pressure Transducer
 2. Thermistor 13. ...
 3. Inverter
 4. Motor
 5. Compressor
 6. Reactor
 7. EEV
 8. High/low pressure switch
 9. Control Board
 10. Base pan heater
 11. Compressor sump heater

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

You only need to know how to check 3 basic readings

1. AC. Voltage
2. DC Voltage
3. Ohms

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

AC Voltage

Write down
the number

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

DC Voltage

Write down
the number

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Ohms

Write down the number

Know Thy Meter

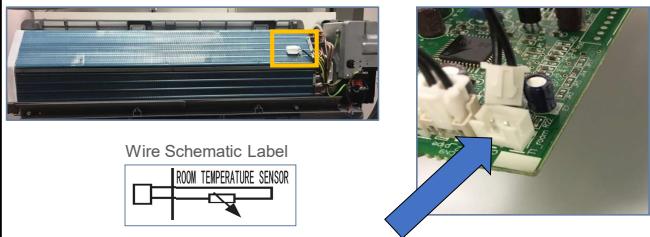
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Thermistor

What does it do?

Only two kinds 10k or 55K

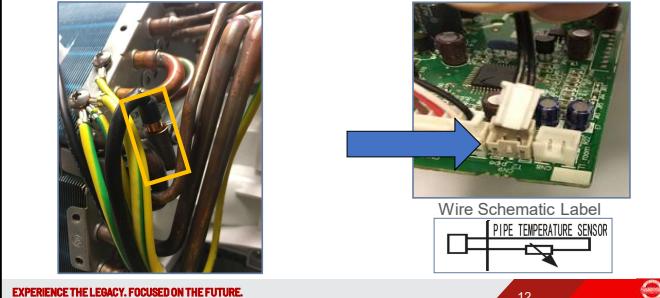
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.


Thermistor/Temperature sensors

- Room temp. (T1) sensor, **10K**
- Indoor coil temp. (T2) sensor, **10K**
- Outdoor coil temp. (T3) sensor, **10K**
- Outdoor ambient temp. (T4) sensor, **10K**
- **Compressor discharge temp. (T5) sensor. 55K**

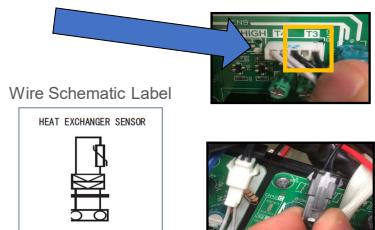
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

DUCTLESS TECHNOLOGY & PRINCIPLES


RETURN AIR THERMISTOR

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

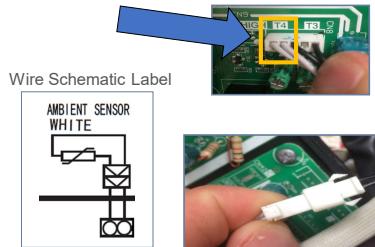
DUCTLESS TECHNOLOGY & PRINCIPLES


EVAPORATOR COIL THERMISTOR

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

DUCTLESS TECHNOLOGY & PRINCIPLES

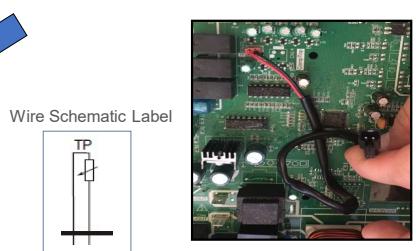
CONDENSOR COIL THERMISTOR


EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

13

DUCTLESS TECHNOLOGY & PRINCIPLES

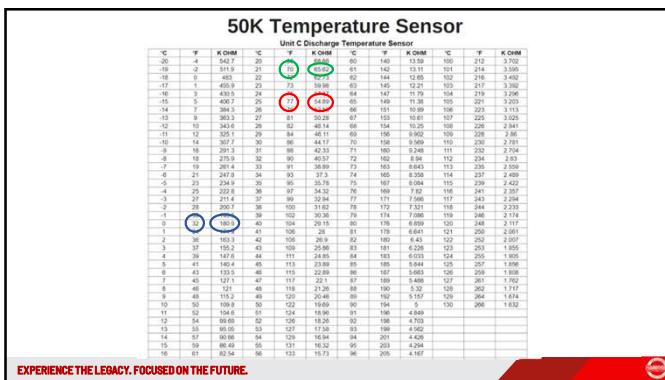
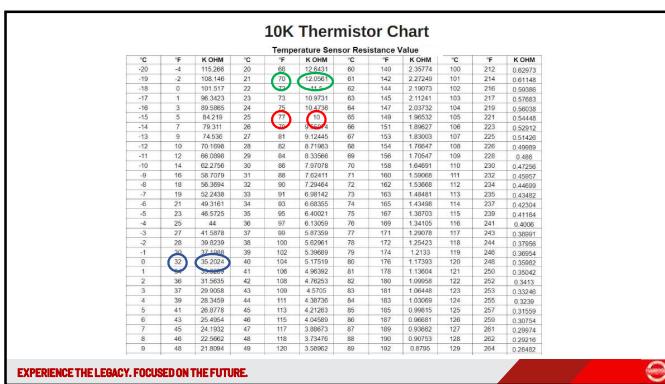
OUTDOOR AIR THERMISTOR


EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

14

DUCTLESS TECHNOLOGY & PRINCIPLES

DISCHARGE TEMPERATURE THERMISTOR

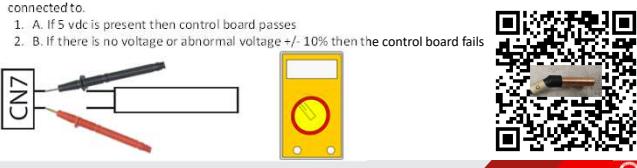
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

15

Find the service manual for this condenser

Yes or No, do you own this tool?

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.


Thermistor Test Procedure

Thermistor Sensor

1. Remove wiring harness of thermistor from board
2. Measure temperature that thermistor was reading with a temp probe
3. Compare the measurements to the chart in the service manual (it is usual for the thermistor may be off a few degrees)
4. Check each wire going to the thermistor to chassis ground (should be OL or mega ohm reading)

Control Board Thermistor Circuit

1. With harness still unplugged from control board, verify 5vdc on the two pins the thermistor was connected to.
 1. A. If 5 vdc is present then control board passes
 2. B. If there is no voltage or abnormal voltage +/- 10% then the control board fails

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reactor

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reactor
What does it do?

Answer: Cleans up the power Supply.
When in doubt check it out.

The normal values should be around zero ohm. Otherwise, the reactor has a malfunction and must be replaced.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

IPM BOARD

REACTOR

COMPRESSOR

DC FAN

NOTE: Use the magnetic ring

Reactor Test Procedure

1. Perform static Ohms test and record the number (Ohm, out your meter leads by touching them together
2. Get Ohms reading on reactor, unplug from board
Reactor must read less than 1 Ohm after subtracting stating ohms reading (step 1)
Less than- 1 Ohm- reactor is good
More than- 1 Ohm- reactor has failed
Always check reactor to chassis ground

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

.9 Ohms

Compressor

Test all terminal to each other

Input Terminal

Blue	1
Red	2
Black	3

Blue

Red

Black

Blue

Red

Black

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Compressor

What is the Ohm reading supposed to be ?

Answer: The Same (10% tolerance-7% is suspect)

Meter #1	Meter #2
Blue-Red 1.0 Ohms	Blue-Red 1.04 Ohms
Blue-Black 1.0 Ohms	Blue-Black 1.04 Ohms
Red-Black 1.0 Ohms	Red-Black .96 Ohms
Variance of 0.0%	Variance of 8.6%
Good or Bad?	Good or Bad?
Resistance Value	KTF310D43UMT
Blue-Red	0.65Ω
Blue-Black	0.37Ω
Red-Black	1.03Ω
	EAPQ420D1UMUA

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

SC440 Specs

Function	Range	Best Accuracy/ Best Resolution
Volts AC	600	1.2% \pm 8 / 0.0001
Amps AC	400	2.0% \pm 10 / 0.001
Volts DC	600	0.5% \pm 2 / 0.0001
μ amps DC	500	1.0% \pm 5 / 0.1
Ohms	50M	1.0% \pm 5 / 0.1
Microfarads	5000	0.1% \pm 5 / 0.1
Hz (clamp)	10 to 400	0.1% \pm 5 / 0.1
Hz (leads)	10 to 1M	0.1% \pm 5 / 0.1
Duty Cycle %	5 to 95	2% \pm 10 / 0.1
°F	-30°F to 932°F	2°F / 0.1
Battery	9V, 100 hrs typical	All calibrations

SC680 Specs

SC680 Specs		
Function	Range	Best Accuracy/ Best Resolution
Wireless	1000 ft	10%
Volts AC	750	$1.5\% \pm 0.001$
Amps AC	600	$2.0\% \pm 0.01$
Volts DC	1000	$0.5\% \pm 0.0001$
Amps DC	600	$2.0\% \pm 0.01$
amps DC	500	$1.0\% \pm 0.01$
Microfarads	10000	$1.0\% \pm 0.01$
Hz (clamp)	10 to 400	$0.1\% \pm 0.1$
Hz (leads)	10 to 1000K	$0.1\% \pm 0.01$
Def. Cycle (%)	5 to 95	$2\% \pm 10 / 0.1$
T (°F)	-50°F to 120°F	$1.1\% \pm 0.1$
T (°C)	-50°C to 130°C	$1.1\% \pm 0.1$
Phase Rot.	80 to 600 VAC	$1.5\% \pm 0.1$
Power (kW)	50	$5\% \pm 0.1$

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Compressor

Ignore this chart


Ignore this chart.

Temperature is a huge factor and that alone makes this chart nearly useless

These numbers are good ONLY when it is 68 outside and the compressor is new

These numbers are good for V1.0. If it is outside and the compressor is new					
Resistance Value	AS1315D3UZF	ATQ42001UMU	ASN98D2UZF	ATF235D22UMT	ATQ360D1UMU
Blue-Red					
Blue-Black	1.75Ω	0.37Ω	1.57Ω	0.75Ω	0.37Ω
Red-Black					
Table 10 — Resistance Value					
Resistance Value	ATM115D43UFZ	ATF250D22UMT	ATF310D43UMT	KSK103D33UEZ3	ASM98D32UFZ
Blue-Red					
Blue-Black	1.87Ω	0.75Ω	0.65Ω	2.13Ω	2.2Ω
Red-Black					
Table 11 — Resistance Value					
Resistance Value	ASN140D21UFZ	ASK89D29UEZD	KSN140D21UFZ	KTM240D57UMT	KSN140D58UFZ
Blue-Red					
Blue-Black	1.28Ω	1.99Ω	1.28Ω	0.62Ω	1.86
Red-Black					

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Compressor/Cond Fan Test Procedure

1. Windings Test

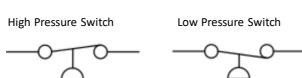
- A. Disconnect U V W terminals at control board
- B. Ohm out U V W terminals to each other and record the reading
Example- U – V, U – W, W – V
If all three readings are within 10% of each other (7% difference has been observed to cause issues at times) then the compressor windings are good.
- IF there is a variance of more than 10%,
 - Make sure your meter leads are clean, battery level on meter is good and you are using needle point leads.
 - Perform same test at compressor terminals, IF there is a 10% or more variance than the compressor has damaged windings.

ALWAYS check all windings to ground

2. Mechanical Test "over current" code

- A. Refer to manual and do exactly as stated (model specific)
- B. This is a rare condition (normally caused by non-working crankcase heater)

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



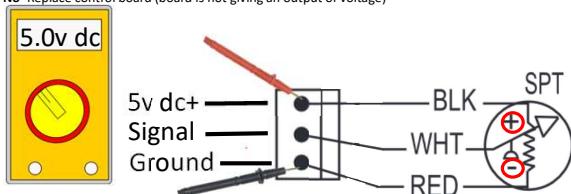
Switch- Temperature/Pressure

Thermal Switch

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Pressure Transducer

1. Do you have 5v DC on the power and the ground ?


Yes- Go to step 2

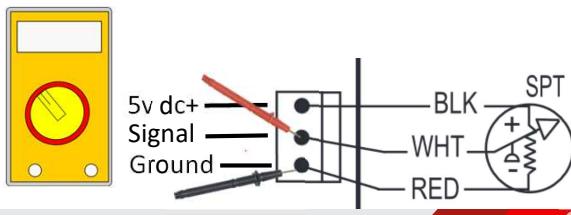
No- Disconnect wiring harness and retest.

Do you have 5v DC on the power and the ground ?

Yes- Replace transducer (it is grounded/shorted)

No- Replace control board (board is not giving an output of voltage)

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



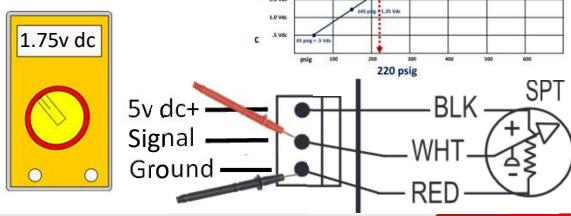
Pressure Transducer

2. Do you have 5v DC on the Signal and the Ground ? (with or without a call)

Never less than .5v DC

Never more than 4.5v DC

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



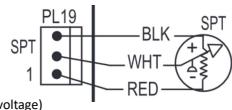
Pressure Transducer

2. Is the transducer reading correctly?

PSIG is reading 220#

How many DC volts should we read?

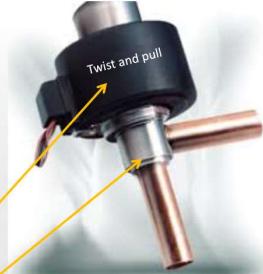
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



Pressure Transducer Test Procedure

1. *Do you have 5v DC on the power and the ground ?*
 Yes- Go to step 2
 No- Disconnect wiring harness and retest.
Do you have 5v DC on the power and the ground ?
 Yes- Replace transducer (it is grounded/shorted)
 No- Replace control board (board is not giving an output of voltage)

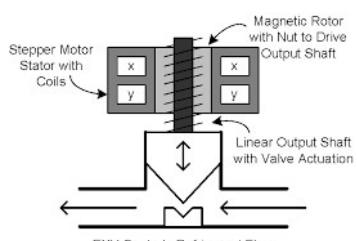
2. *Do you have 5v DC on the Signal and the Ground ? (with or without a call)*
 Never less than .5v DC
 Never more than 4.5v DC


3. *Is the transducer reading correctly?*
 Low Side PSIG is reading 125#

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

1

EEV – Electronic Expansion Valve

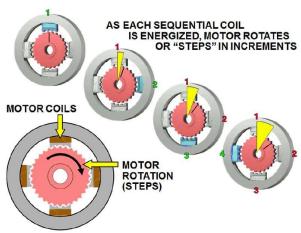


EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

2

EEV (EXV)

How Does It Work ?


EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

1

EEV (EXV)

How Does It Work ?

Stepper Motor

AS EACH SEQUENTIAL COIL IS ENERGIZED, MOTOR ROTATES OR "STEPS" IN INCREMENTS

MOTOR COILS

MOTOR ROTATION (STEPS)

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Two Parts to check:

1. Mechanical

2. Electrical

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

EEV Test Procedure

1. Ohm out all wires to each other-
 - 5 Wire- will have only two reading 45 Ohms and 90 Ohms (nominal)
 - 6 Wire- Will have only three readings 45 Ohms, 90 Ohms (nominal) and OL (open line)
 - Always- Check each wire to chassis ground (must be OL or mega ohm reading)
2. Ohm out wires per below chart-
 - Always- Check each wire to chassis ground (must be OL or mega ohm reading)

LEAD WINDING COLOR	NORMAL VALUE
Red-Blue	
Red-Yellow	
Brown-Orange	
Brown-White	

45 Ohms
(nominal)

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reversing Valve

What is its purpose ?

To change the route of refrigerant between the indoor and outdoor coils, which will cause the coils to exchange their functions of condenser and evaporator.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reversing Valve

BEWARE of high voltage

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reversing Valve

Power on. Use a digital tester to measure the voltage. When the unit operates in cooling, it is 0V. When the unit operates in the Heating mode, it is about 2.50VAC. If the value of the voltage is not in the range, the PCB needs to be replaced.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reversing Valve

Resistance of coil should be 1.8-2.5 K Ohms.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Reversing Valve Test Procedure

AKA 4 way valve

1. Test Reversing Valve Coil

- A. Disconnect wire from control board
- B. Test Resistance of coil, should be 1.8-2.5 K Ohms
- C. Test each wire from coil to valve body for a short. Should read OL

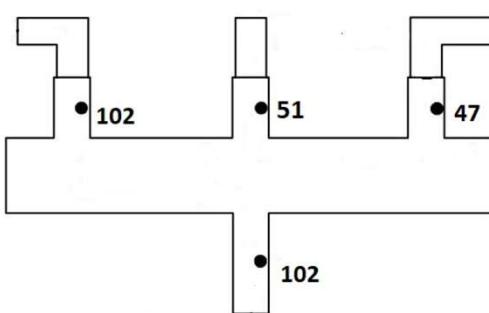
2. Test Supply Voltage

- A. In Cooling there should be 0 volts
- B. In Heating there should be the same voltage as supply (L1 and L2)

3. Test Valve Body for Bypass

- A. there will be two hot and two cold copper pipes. Measure the two cold pipes (6" + from valve body)
- IF the two cold pipes are within 4 degrees of each other the valve body is good
- IF the two cold pipes have more than a 4 degree difference than the valve body is bypassing

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Compressor Crank Case Heater

What is its purpose?

Crankcase heaters are used to keep the compressor oil at an elevated temperature to ensure the refrigerant does not migrate and mix with the oil.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Compressor Crankcase Heater Test Procedure

1. Test Crankcase Heater Coil

- Disconnect wire from control board
- Test resistance of heater, should be 1.8-2.4 K Ohms
- Test each wire from heater to chassis for a short (heater needs to be attached to compressor). Should read OL

2. Test Supply Voltage

If ambient is below 38 degrees crankcase heater will have 240 at the control board terminals

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Base Pan Heater

What is its purpose?

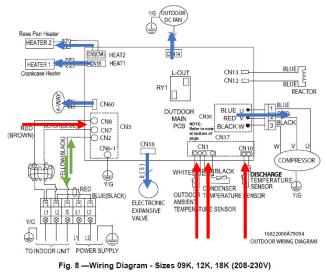
Base pan heater used to prevent ice formation and to promote water drainage after defrost cycles in cold temperatures

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Base Pan Heater Test Procedure

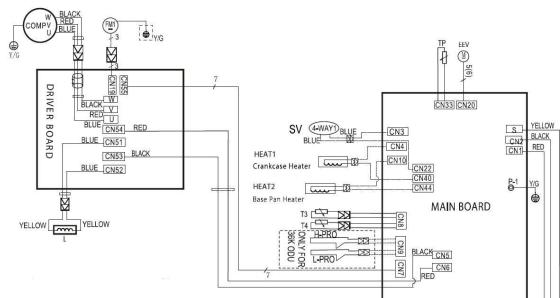
1. Test Base Pan Heater Coil

- Disconnect wire from control board
- Test resistance of heater, should be 350-450 Ohms (ambient temperature makes a difference).
- Test each wire from heater to chassis for a short (heater needs to be installed in unit for correct reading). Should read OL

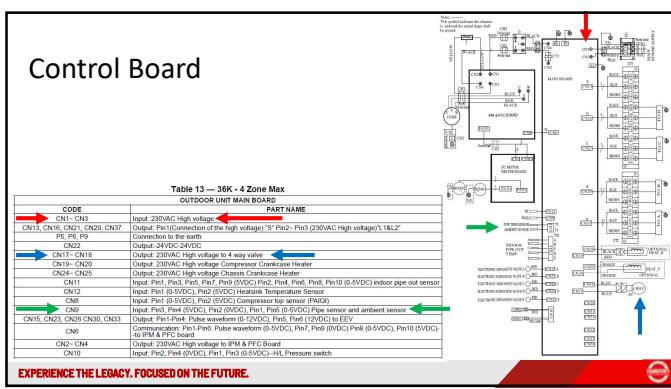

2. Test Supply Voltage

System turns on base pan heater before defrost initiation and continues after defrost cycle for an unspecified amount of time (based on thermistor data and algorithm)

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.


Control Board

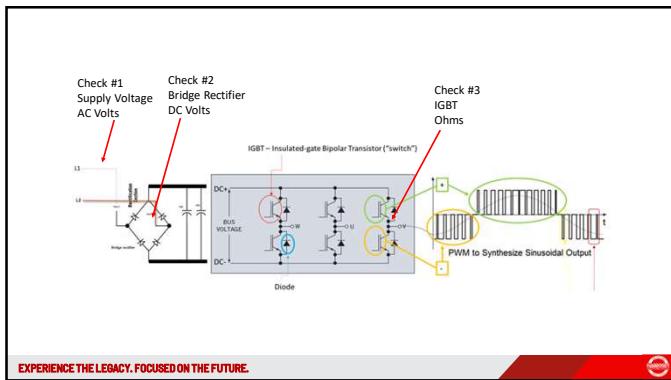
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.


Control Board

Two boards 24K and above

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Control Board


Invertor Board (VFD)

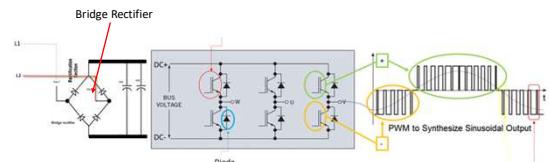
Three Checks

1. Supply Voltage- AC Voltage
2. Bridge Rectifier- DC Voltage
3. IGBT- Ohms

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

Check #1Supply Voltage
AC Volts

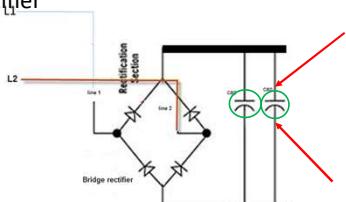
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



Check#2

Bridge Rectifier- What is it's purpose?

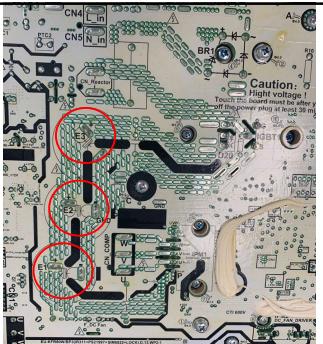
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



Check#2

Bridge Rectifier

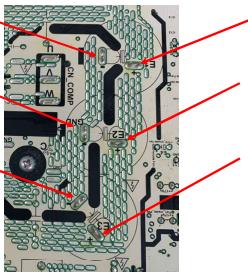
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



Check #2

Bridge Rectifier
DC Volts

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



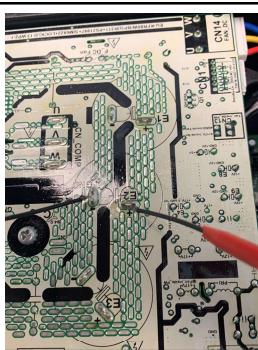
Check #2

Bridge Rectifier

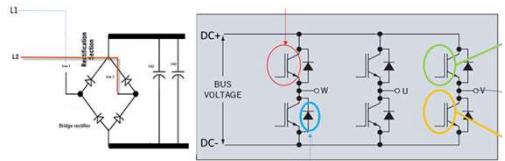
Test Procedure:

1. Power up unit, on stand by
2. Voltage at any one capacitor should be NOMINAL 300V AC.
 1. 300 V AC present go to step 3
 2. Replace board if voltage is off

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



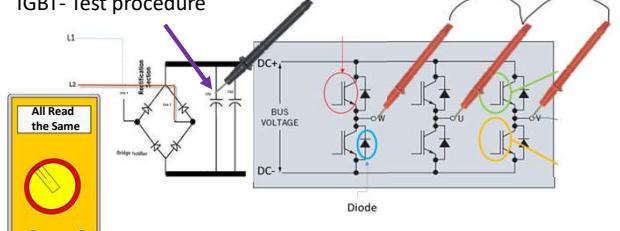
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



Check #3

IGBT- Insulated Gate Bipolar Transistor

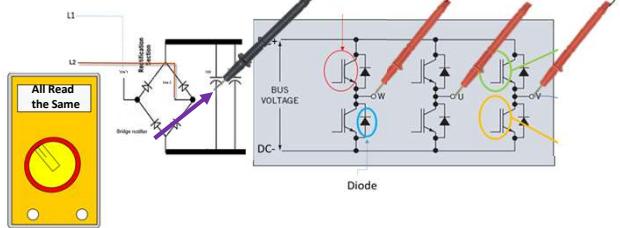
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.



Check #3

IGBT- Test procedure

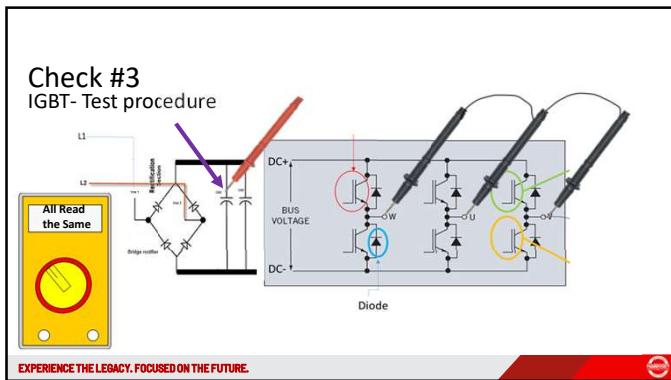
EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

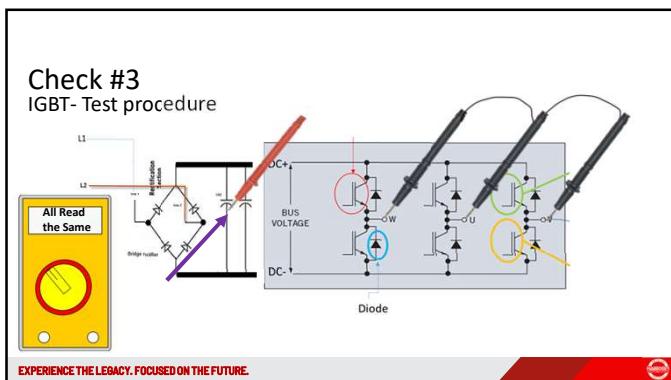


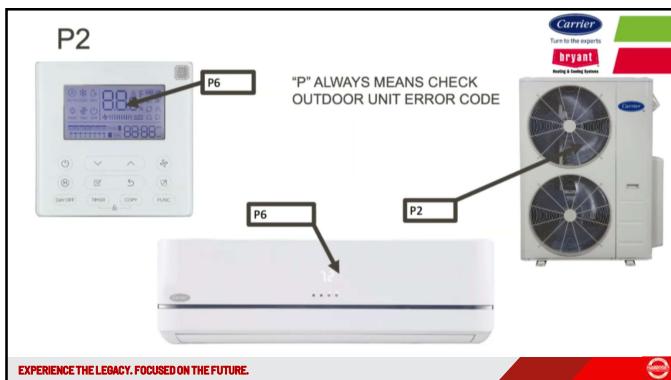
Check #3

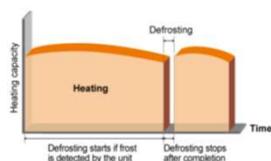
IGBT- Test procedure

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.









Defrost

According to certain indoor/outdoor ambient temperatures and the pipe temperature of outdoor condenser, defrosting will occur. There is no set time for defrost it is based on the algorithm of the board and the outdoor temperature of the system.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

67

PROPER DELTA T = PROPERLY CHARGED

Turn all heads to max demand (not turbo), wait ten minutes then test for proper temperature split on all indoor units

- Check the TD in "COOL". If the TD is between 20-30 degrees, your charge is correct
(TD= Temp in - Temp out) Temperature Differential

- Check the TD in "HEAT" mode.
If the TD is between 30-40 degrees, your charge is correct. You will see this when temperature is above 30° F.

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

68

HABEGGER
COMPLETE HVAC SOLUTIONS

Ductless 201

presented by:

Roman Krywyn

309-690-9711

IL/IA Residential Training & Service
Manager

EXPERIENCE THE LEGACY. FOCUSED ON THE FUTURE.

